Part Number Hot Search : 
1N4102 DD50ST1R 20D112K 20D112K RF610 QL8050 1221C LN251CAL
Product Description
Full Text Search
 

To Download IL8190N Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  technical data precision air-core tach/speedo driver with return to zero IL8190N n suf f i x p l as t i c di p 1 16 ordering information il 8190n plastic dip t a = -40 t o 105 c functional description the IL8190N is specifically designed for use with air?core meter movements. the ic pr ovides all the functions necessary for an analog tachom eter or speedometer. the IL8190N takes a speed sensor input and generates sine and cosine related output signals to differentially drive an air?core meter. features ? direct sensor input pin assignment 1 2 3 5 4 6 7 8 16 15 14 13 12 11 10 9 cp - cp + sq ou t v out /f fr e q in v re g v cc gnd gnd co s + co s - gnd gnd si n + si n - bi a s ? high output torque ? low pointer flutter ? high input impedance ? overvoltage protection ? return to zero absolute maximum ratings* sy m b o l p a r a m e t e r v a l u e u n i t 100 ms pulse transient 60 v cc supply voltage continuous 24 v topr operating temperature -40 to +105 c t j junction temperature -40 to +150 c tstg storage temperature -60 to +165 c t l lead temperature soldering: wave solder (through hole styles only) (note) 260 peak c esd (human body model) 4.0 kv note: 10 seconds maximum. *the maximum package power dissipation must be observed. 1
IL8190N block diagram chur ge pump inpu t com p . vo l t a g e r egu lator v 7.0 v re g + + + + + + func . gen . high v o ltage prote c tion co s outp u t cos + cos - gnd gnd freq in v cc v ou t / f v re g gnd gnd sin+ sin- cp- sq ou t cp+ bias sin e outp ut pin discriptions pin no. sy mbol function 1 cp+ positive input to charge pump 2 sq out buffered square wave output signal 3 freq in speed or rpm input signal 4, 5, 12, 13 gnd ground connections 6 cos+ positive cosine output signal 7 cos? negative cosine output signal 8 v cc ignition or battery supply voltage 9 bias test point or zero adjustment 10 sin? negative sine output signal 11 sin+ positive sine output signal 14 v reg voltage regulator output 15 v out /f output voltage proportional to input signal frequency 16 cp? negative input to charge pump 2
IL8190N electrical characteristics (-40c t a 85c, 8.5 v v cc 16 v, unless otherwise specified) sy m b o l p a r a m e t e r test condition m i n t y p max u nit supply voltage section i cc supply current v cc = 16 v, no load 66 125 ma v cc normal operation range 8.5 13.1 16 v input comparator section v positive input threshold 1.0 2.1 3.0 v v h input hysteresis 200 470 ? mv i ib1 input bias current (note 1) 0 v v in 8.0 v ? -4 -80 a f in input frequency range 0 - 20 khz v in input voltage range in series with1.0 k ? - 1 . 0 - v cc v v sat output v sat i o = 10 ma ? 0.10 0.40 v i sing output leakage v o = 7.0 v ? 0.02 10 a v cc-t h low v cc disable threshold 7 . 0 8 . 0 8 . 5 v v l logic 0 input voltage 1.0 1.6 ? v voltage regulator section v ref output voltage 6.25 7.00 7.50 v i o output load current - - 10 ma ? v ref-load output load regulation 0 to 10 ma ? 4 50 mv ? v ref-line output line regulation 8.5 v v cc 16 v ? 30 150 mv prs power supply rejection v cc = 13.1 v, 1.0 v p/p 1.0 khz 3 4 4 6 ? d b charge pump section u inv inverting input voltage 1.5 2.1 2.5 v i ib2 input bias current ? 3 5 1 5 0 n a v bias v bias input voltage 1.5 2.1 2.5 v u ninv non invert. input voltage i in = 1.0 ma ? 0.6 1.1 v l k linearity (note 2) @ 0; 87.5; 175; 262.5; + 350 hz ?0.10 0 . 2 7 + 0 . 7 0 % k v out /f gain @ 350 hz, c cp = 0.0033 f, r t = 243 k ? 7 . 0 1 1 1 3 mv/h z g n+ norton gain, pos i tive i in = 15 a 0 . 9 1 . 0 1 . 1 g n- norton gain, negative i in = 15 a 0 . 9 1 . 0 1 . 1 function generator section: ?40 c t a 85 c, v cc = 13.1 v unless otherw ise noted v cc-t h 1 return to zero thres hold t a = 25c 5.2 6.0 7.0 v v (cos+-cos-) differential drive voltage (v cos+ ? v cos? ) 8.5 v v cc 16 v, = 0 5 . 5 6 . 5 7 . 5 v v (sin+-sin-) differential drive voltage (v sin+ ? v sin? ) 8.5 v v cc 16 v, = 90 5 . 5 6 . 5 7 . 5 v v (cos+-cos-) differential drive voltage (v cos+ ? v cos? ) 8.5 v v cc 16 v, = 180 ?7.5 - 6 . 5 ? 5 . 5 v v (sin+-sin-) differential drive voltage (v sin+ ? v sin? ) 8.5 v v cc 16 v, = 270 ?7.5 - 6 . 5 ? 5 . 5 v i out differential drive current 8.5 v v cc 16 v ? 33 42 ma zero hertz output angle -1.5 0 1.5 deg function generator error (note 3) reference figures 1, 2, 3, 4 v cc = 13.1 v = 0 to 305 -2.0 0 + 2 . 0 d e g 3
IL8190N electrical characteristics (continued) (-40c t a 85c, 8.5 v v cc 16 v, unless otherwise specified) sy m b o l p a r a m e t e r test condition min t y p m a x u nit function generator section: ?40 c t a 85 c, v cc = 13.1 v unless otherw ise noted (continued) function generator error 13.1 v v cc 16 v -2.5 0 +2.5 deg function generator error 13.1 v v cc 11 v -1.0 0 +1.0 deg function generator error 13.1 v v cc 9.0 v -3.0 0 +3.0 deg function generator error 25c t a 80c -3.0 0 +3.0 deg function generator error 25c t a 105c -5.5 0 +5.5 deg function generator error -40c t a 25c -3.0 0 +3.0 deg /v function generator gain t a = 25c, vs v out /f 6 0 7 7 9 5 / v notes: 1. input is clamped by an internal 12 v zener. 2. applies to % of full scale (270). 3. deviation from nominal per table 1 after calibration at 0 and 270. ty pical perfomance characteristics 7 6 5 4 3 2 1 0 o u t put v o l t a g e ( v ) -1 -2 -3 -4 -7 0 45 90 d egre e s o f d e f l ec t i o n ( ) 135 180 22 5 27 0 315 si n co s -6 -5 v out /f = 2.0 v+2.0 freq c cp r t (v reg - 0.7 v) 0 45 90 fre q u e ncy/ o u t p u t an gl e ( ) 135 1 8 0 22 5 27 0 31 5 7 6 5 4 3 2 0 1 figure 1. function generator output voltage v s . degrees of deflection figure 2. charge pump output voltage v s . output angle - 7 .0 v -7 .0 v 7 .0 v 7 .0 v angl e (v si n + ) - (v si n - ) v sin+ - v si n - = ar ct a n [ ] (v cos+ ) - (v cos- ) v c os - v c os - 0 45 90 t heo ret i c a l a n gle ( ) 13 5 1 8 0 22 5 27 0 31 5 1. 50 1. 00 0.50 0. 00 0.25 0.75 1.25 -0.50 -1. 0 0 -0. 7 5 -0 . 2 5 -1.50 -1. 2 5 figure 3. output angle in polar form figure 4. nominal output dev i ation 4
IL8190N n o m i na ll ang l e (d egr e e s ) 1 5 9 13 17 21 25 29 33 37 41 45 ideal d egr ees 0 5 10 15 20 25 30 40 35 45 figure 5. nominal angle v s . ideal angle (after calibrating at 180 ) table 1. function generator output nominal angle vs. ideal angle (after calibrating at 270 ) id eal deg r ees nomi- na l deg r ees id eal deg r ees nomi- na l deg r ees id eal deg r ees nomi- na l deg r ees id eal deg r ees nomi- na l deg r ees id eal deg r ees nomi- na l deg r ees id eal deg r ees nomi- na l deg r ees 0 0 1 7 1 7 . 9 8 3 4 33.04 7 5 7 4 . 0 0 1 6 0 1 5 9 . 1 4 2 4 5 244.63 1 1 . 0 9 1 8 1 8 . 9 6 3 5 34.00 8 0 7 9 . 1 6 1 6 5 1 6 4 . 0 0 2 5 0 249.14 2 2 . 1 9 1 9 1 9 . 9 2 3 6 35.00 8 5 8 4 . 5 3 1 7 0 1 6 9 . 1 6 2 5 5 254.00 3 3 . 2 9 2 0 2 0 . 8 6 3 7 36.04 9 0 9 0 . 0 0 1 7 5 1 7 4 . 3 3 2 6 0 259.16 4 4 . 3 8 2 1 2 1 . 7 9 3 8 37.11 9 5 9 5 . 4 7 1 8 0 1 8 0 . 0 0 2 6 5 264.53 5 5 . 4 7 2 2 2 2 . 7 1 3 9 38.21 1 0 0 1 0 0 . 8 4 1 8 5 1 8 5 . 4 7 2 7 0 2 7 0 . 0 0 6 6 . 5 6 2 3 2 3 . 6 1 4 0 39.32 1 0 5 1 0 6 . 0 0 1 9 0 1 9 0 . 8 4 2 7 5 2 7 5 . 4 7 7 7 . 6 4 2 4 2 4 . 5 0 4 1 40.45 1 1 0 1 1 0 . 8 6 1 9 5 1 9 6 . 0 0 2 8 0 2 8 0 . 8 4 8 8 . 7 2 2 5 2 5 . 3 7 4 2 41.59 1 1 5 1 1 5 . 3 7 2 0 0 2 0 0 . 8 6 2 8 5 2 8 6 . 0 0 9 9 . 7 8 2 6 2 6 . 2 3 4 3 42.73 1 2 0 1 1 9 . 5 6 2 0 5 2 0 5 . 3 7 2 9 0 2 9 0 . 8 6 1 0 1 0 . 8 4 2 7 2 7 . 0 7 4 4 43.88 1 2 5 124.00 2 1 0 2 0 9 . 5 6 2 9 5 295.37 1 1 1 1 . 9 0 2 8 2 7 . 7 9 4 5 45.00 1 3 0 129.32 2 1 5 2 1 4 . 0 0 3 0 0 299.21 1 2 1 2 . 9 4 2 9 2 8 . 7 3 5 0 50.68 1 3 5 135.00 2 2 0 2 1 9 . 3 2 3 0 5 303.02 1 3 1 3 . 9 7 3 0 2 9 . 5 6 5 5 56.00 1 4 0 140.68 2 2 5 2 2 5 . 0 0 1 4 1 4 . 9 9 3 1 3 0 . 3 9 6 0 60.44 1 4 5 146.00 2 3 0 2 3 0 . 5 8 1 5 1 6 . 0 0 3 2 3 1 . 2 4 6 5 64.63 1 5 0 150.44 2 3 5 2 3 6 . 0 0 1 6 1 7 . 0 0 3 3 3 2 . 1 2 7 0 69.14 1 5 5 154.63 2 4 0 2 4 0 . 4 4 note: temperature, voltage and nonlinearity not included. 5
IL8190N circuit description and application notes the IL8190N is specifically designed for use with air-core meter movements. it includes an input comparator for sensing an input signal from an ignition pulse or speed sensor, a charge pump for frequency to voltage conversion, a bandgap voltage regulator for stable operation, and a function generator with sine and cosine amplifiers to differentially drive the meter coils. from the partial schematic of figure 6, the input signal is applied to the freq in lead, this is the input to a high impedance comparator with a typical positive input threshold of 2.0 v and typical hysteresis of 0.5 v. the output of the comparator, sq out , is applied to the charge pump input cp+ through an external capacitor c cp . when the input signal changes state, c cp is charged or discharged through r3 and r4. the charge accumulated on c cp is mirrored to c4 by the norton amplifier circuit comprising of q1, q2 and q3. the charge pump output voltage, v out /f, ranges from 2.0 v to 6.3 v depending on the input signal frequency and the gain of the charge pump according to the formula: v out /f = 2.0 v+ 2.0 freq c cp r t (v re g - 0.7 v) r t is a potentiometer used to adjust the gain of the v/f output stage and give the correct meter deflection. the v/f output voltage is applied to the function generator which generates the sine and cosine output voltages. the output voltage of the sine and cosine amplifiers are derived from the on?chip amplifier and function generator circuitry. the various trip points for the circuit (i.e., 0 , 90 , 180 , 270 ) are determined by an internal resistor divider and the bandgap voltage reference. the coils are differentially driven, allowing bidirectional current flow in the output s, thus providing up to 305 range of meter deflection. driving the coils differentially offers faster response time, higher current capability, higher output voltage swings, and reduced external component count. the key advantage is a higher torque output for the pointer. the output angle, , is equal to the v/f gain multiplied by the function generator gain: = a v/f a fg , where: a fg = 77 /v(ty p ) the relationship between input frequency and output angle is: = a fg 2.0 freq c cp r t (v reg - 0.7 v) or, = 970 freq c cp r t the ripple voltage at the v/f converter?s output is determined by the ratio of c cp and c4 in the formula: c4 v) 0.7 - (v c v reg cp = ? 2. 0 v + + + 2. 0 v r4 q1 0. 25 v q3 q2 r3 cp + cp- c4 v to f q sq u a r e fr e q in sq ou t v re g c cp r t v c (t ) v ou t /f figure 6. partial schematic of input and charge pump 6
IL8190N t dch g v cc v re g fr e q in sq ou t i cp + v cp + t t ch g figure 7. timing diagram of freq in and i cp ripple voltage on the v/f output causes pointer or needle flutter especially at low input frequencies. the response time of the v/f is determined by the time constant formed by r t and c4. increasing the value of c4 will reduce the ripple on the v/f output but will also increase the response time. an increase in response time causes a very slow meter movement and may be unacceptable for many applications. the IL8190N has an undervoltage detect circuit that disables t he input comparator when v cc falls below 8.0 v (typical). with no input signal the v/f output voltage decreases and the needle moves towards zero. a second undervoltage detect circuit at 6.0 v(typical) causes the function generator to generate a differential sin drive voltage of zero volts and the differential cos drive voltage to go as high as possible. this combination of voltages (figure 1) across the meter coil moves the needle to the 0 position. connecting a large capacitor(> 2000 f) to the v cc lead (c2 in figure 8) increases the time between these undervoltage points since the capacitor discharges slowly and ensures that the needle mov e s t o wards 0 as opposed to 360 . the exact value of the capacitor depends on the response time of the system, he maximum meter deflection and the current consumption of the circuit. it should be selected by breadboarding the design in the lab. 7
IL8190N r3 3. 0 k ? 1. 0 k ? 10 k ? r2 c3 r1 ba t t e r y d1 c1 c2 co s i ne a i r c o re ga ug e 20 0 ? s p ee do m e t e r sin e sin - sin + gn d gn d gn d gn d cp + 1 i l 8190 n cp- 0. 4 7 f + c4 v ou t /f r t t r im re si sto r 20 p p m / c v reg v cc fr e q in sq ou t bias co s - co s + 3. 9 50 0 m w gn d 1. 0 a 60 0p v | d2 50 v , 50 0 m w ze n e r 0. 1 f 20 00 f 30 p p m / c 0. 00 3 3 f 0. 1 f c cp r4 sp e e d o in p u t notes: 1. c2 (> 2000 f) is needed if return to zero function is required. 2. the product of c4 and r t have a direct effect on gain and ther efore directly affect temperature compensation. 3. ccp range: 20 pf to 0.2 f. 4. r4 range; 100 k ? to 500 k ? . 5. the ic must be protected from transi ents above 60 v and reverse battery conditions. 6. additional filtering on the freq in lead may be required. 7. gauge coil connections to the ic mu st be kept as short as possible ( 3.0 inch) for best pointer stability. figure 8. speedometer or tachometer application 8
IL8190N design example maximum meter deflection = 270 maximum input frequency = 350 hz 1. select r t and c cp = 970 freq c cp r t = 270 let c cp = 0.0033 f, find r t f 0.0033 hz 350 970 270 r t = r t = 243 k ? r t should be a 250 k ? potentiometer to trim out any inaccuracies due to ic tolerances or meter movement pointer placement. 2. select r3 and r4 resistor r3 sets the output current from the voltage regulator. the maximum output current from the voltage regulator is 10 ma. r3 must ensure that the current does not exceed this limit. choose r3 = 3.3 k ? the charge current for c cp is ma 90 . 1 k 3.3 v 0.7 - v reg = ? c cp must charge and discharge fully during each cycle of the input signal . time for one cycle at maximum frequency is 2.85 ms. to ensure that c cp is charged, assume that the (r3 + r4) c cp time constant is less than 10% of the minimum input period. s 285 hz 350 1 10% t = = choose r4 = 1.0 k ? . discharge time: t dchg = r3 c cp = 3.3 k ? 0.0033 f = 10.9 s charge time: t chg = (r3 + r4)c cp = 4.3 k ? 0.0033 f = 14.2 s 3. determine c4 c4 is selected to satisfy both the maximum allowable ripple voltage and response time of the meter movement. max reg cp ? v 0.7v) (v c 4 c ? = with c4 = 0.47 f, the v/f ripple voltage is 44 mv. the last component to be selected is the return to zero capacitor c2. this is selected by increasing the input signal frequency to its maximum so the pointer is at its maximum deflection, then removing the power from the circuit. c2 should be large enough to ensure that the pointer always returns to the 0 position rather than 360 under all operating conditions. figure 11 shows how the IL8190N and the cs8441 are used to produce a speedometer and odometer circuit. in some cases a designer may wish to use the IL8190N only as a driver for an air?core meter having performed the v/f conversion elsewhere in the circuit. figure 9 shows how to drive the IL8190N with a dc voltage ranging from 2.0 v to 6.0 v. this is accomplished by forcing a voltage on the v out /f lead. the alternative scheme shown in figure 10 uses an external op amp as a buffer and operates over an input voltage range of 0 v to 4.0 v. cp - 10 0 k ? 10 k ? v reg v in v ou t /f il 81 9 0 n n/c 2. 0 v t o 6. 0 v d c bia s + figure 9. driv ing the IL8190N from an external dc voltage figures 9 and 10 are not temperature compensated. cp - 10 0 k ? 10 0 k ? 10 0 k ? 10 k ? v in v ou t /f il 8 1 9 0 n 0 v t o 4 . 0 v d c bi as + + 10 0 k ? figure 10. driv ing the IL8190N from an external dc voltage using an op am p buffer 9
IL8190N r3 3. 0 k ? 1. 0 k ? 10 k ? r2 c3 r1 ba t t e r y d1 c1 c2 co s i ne air c o re ga ug e 20 0 ? air c o r e s t e ppe r mo t o r 20 0 ? sp e e do me te r od om et e r si n e si n - si n + gn d gn d gn d c s 84 41 gn d cp + 1 1 il 8 1 9 0 n cp - 0. 47 f + c4 v ou t /f r t t r im r e sisto r 2 0 ppm / c v re g v cc fr e q in sq ou t bi as co s - co s + 3. 9 50 0 m w gn d 1. 0 a 60 0 p v | d2 50 v , 50 0m w ze n e r 0. 1 f 10 f 3 0 ppm / c 0. 003 3 f 0. 1 f c cp r4 sp ee d o in p u t 24 3 k ? notes: 1. c2 = 10 f with cs8441 application. 2. the product of c4 and r t have a direct effect on gain and ther efore directly affect temperature compensation. 3. ccp range: 20 pf to 0.2 f. 4. r4 range; 100 k ? to 500 k ? . 5. the ic must be protected from transi ents above 60 v and reverse battery conditions. 6. additional filtering on the freq in lead may be required. 7. gauge coil connections to the ic mu st be kept as short as possible ( 3.0 inch) for best pointer stability. figure 11. speedometer with odometer or tachometer application 10
IL8190N package dimensions n suffix plastic (ms - 001bb) l h m j a b f g d se a t i n g pl a n e n k 0. 2 5 ( 0 . 010) m t -t - c 1 16 8 9 dimensions, mm sy mbol m i n m a x a 1 8 . 6 7 1 9 . 6 9 b 6 . 1 0 7 . 1 1 c 5 . 3 3 d 0 . 3 6 0 . 5 6 f 1 . 1 4 1 . 7 8 g 2 . 5 4 h 7 . 6 2 j 0 1 0 k 2 . 9 2 3 . 8 1 l 7 . 6 2 8 . 2 6 m 0 . 2 0 0 . 3 6 n 0 . 3 8 notes: 1. dimensions ?a?, ?b? do not in clude mold flash or protrusions. maximum mold flash or protrusions 0.25 mm (0.010) per side. 11


▲Up To Search▲   

 
Price & Availability of IL8190N

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X